
On Upgrading the Numerics in Combustion Chemistry
Codes

DOUGLAS A. SCHWER, JOHN E. TOLSMA, WILLIAM H. GREEN, JR., and
PAUL I. BARTON*

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge,
MA 02139, USA

A method of updating and reusing legacy FORTRAN codes for combustion simulations is presented using the
DAEPACK software package. The procedure is demonstrated on two codes that come with the CHEMKIN-II
package, CONP and SENKIN, for the constant-pressure batch reactor simulation. Using DAEPACK generated
code, analytical derivative calculations, sparsity pattern information, and hidden discontinuity information can
be obtained for the models of interest. This information can be easily integrated with different solvers giving
the modeler great flexibility in selecting the best solution procedure. Using the generated code, the CONP code
was connected to three different solvers, and the SENKIN code was connected to two different solvers. The
effect of model formulation, analytical derivatives, sparsity, and sensitivity equation solution method were
analyzed for three large kinetic mechanisms for methane, acetylene, and n-heptane. For the n-heptane model,
with 544 species and 2446 reactions, a factor of 10-speed improvement over the original solution procedure was
found using analytical derivatives and sparse linear algebra. For sensitivity calculations, for a small number of
parameters, a factor of 55 improvement over the original solution procedure was found for the n-heptane
problem. Upon closer examination of results, no one method is found to always be superior to other methods,
and selection of the appropriate solution procedure requires an examination of the specific kinetic mechanism,
which is easily conducted using DAEPACK generated code. © 2002 by The Combustion Institute

INTRODUCTION

During the past two decades, computer simula-
tions have become an important tool for design-
ing and investigating combustion systems. Con-
siderable effort has been devoted to generate
chemistry models applicable to a wide range of
reaction conditions, as well as to more accu-
rately predict the existence of pollutant species,
which have concentrations several orders of
magnitude smaller than the main reactants and
products. Much progress has been made in the
last decade towards this goal; however, to ac-
complish this the reaction mechanisms have
increased greatly in complexity because of the
addition of many radicals and other transient
species into the mixture description.

The number of species and reactions involved
in these new mechanisms is often staggering.
One example of this is methane/air combustion,
which is as basic as one can get for hydrocar-
bons, but requires anywhere from 30 to 50
species and hundreds of reactions to accurately
describe the chemistry over a wide range of
conditions. Complex fuels have also received

much attention, and over the last five years
several programs have been developed to build
reaction mechanisms for different fuels based
on well understood reaction rules [1]. For more
complex fuels, the number of species in the
model can easily be several hundred, with the
number of reactions in the thousands.

Although the older computer codes can still
handle simulations for these much more com-
plex systems (sometimes with extensions and
adjustments), they often use routines that be-
come inefficient quickly as the number of spe-
cies and reactions increases. There are two
approaches to help minimize this. One method
is to work on robust ways to reduce the size of
the chemical mechanisms while retaining suffi-
cient accuracy. There have been several efforts
along these lines and much progress has been
made [2–5], but efficient general algorithms for
reducing mechanisms and ensuring the reduced
models are accurate over the range of condi-
tions important in a combustion simulation are
still not available.

Another approach is to replace the existing
solution procedures with newer procedures that
take advantage of advances made in numerical
analysis during the last decade. To do this,* Corresponding author. E-mail: pib@mit.edu

COMBUSTION AND FLAME 128:270–291 (2002)
0010-2180/02/$–see front matter © 2002 by The Combustion Institute
PII 0010-2180(01)00352-2 Published by Elsevier Science Inc.



however, significant portions of these legacy
codes must be rewritten to take advantage of
the new solvers, which is often a time consuming
and error prone task. Unless the interfaces
remain consistent, a considerable amount of
work is also necessary to validate the new code
to the same degree as the previous, older codes.

In this paper, we present a new method to
automate this process of updating legacy codes.
We demonstrate this procedure on a simple
chemical simulation and show how this can
improve computational performance in some
cases by over an order of magnitude. To accom-
plish this, we use a software package developed
at MIT called DAEPACK [6]. We first describe
DAEPACK and then discuss the chemical sys-
tems and solution techniques used for these
simulations. We then apply DAEPACK to cal-
culate analytical derivatives and sparsity infor-
mation for three separate chemical kinetic
mechanisms, and examine the efficiency of the
derivative calculations. Finally, we compute the
resulting simulations with and without sensitiv-
ity computations, using several solvers and tech-
niques that can be easily interfaced with DA-
EPACK generated code. All computations were
conducted on an 800 MHz Pentium-III com-
puter with 256 MB running Linux.

DESCRIPTION OF DAEPACK

The oldest and most prevalent approach used
for modeling and simulation is the FORTRAN-
based paradigm. The model is typically encap-
sulated into a single subroutine that calculates
the residuals for the system of equations of
interest. Very often, the residual subroutine
calls third-party subroutine libraries to compute
the residuals. Older solution techniques typi-
cally require only the residual subroutine and
some other easily obtainable model informa-
tion. Newer techniques, however, often require
much more specific information about the sys-
tem of equations, but also offer much more
efficient, robust, and sometimes more accurate
solution procedures. This information is typi-
cally difficult to obtain and code into the sub-
routine, especially with the use of calls to third-
party subroutine libraries which can have large,

complex, and interconnected hierarchies of sub-
routines.

DAEPACK is a collection of programs de-
veloped to help modelers apply modern algo-
rithms and techniques to their FORTRAN1

models efficiently and accurately. At the core of
DAEPACK is a source code analyzer. The
analyzer is able to parse FORTRAN source
code and extract information needed for more
modern solvers, such as the calculation of ana-
lytical derivatives, sparsity information, and hid-
den discontinuities. DAEPACK then generates
automatically auxiliary subroutines to calculate
this information, making it available to the
modeler for analysis and for interfacing with
modern solvers.

For this paper, two aspects of DAEPACK are
demonstrated for programs of interest to the
combustion community. The first aspect is the
generation of analytical derivatives. For stiff
ODE/DAE solution procedures, derivatives of
the model are necessary for using robust solu-
tion techniques. Numerical derivatives, espe-
cially for very large models, are costly and not
always accurate, and determining and coding
the analytical derivatives by hand can be time
consuming for complex subroutine libraries.
Several methods for obtaining analytical Jaco-
bians automatically have been developed [7].
DAEPACK currently implements the sparse
forward mode method of automatic differenti-
ation [7] and we plan to add other modes in
future releases of the software.

In addition to calculating analytical deriva-
tives, DAEPACK can also generate sparsity
patterns for a particular model. With the model
in symbolic form, the generated code can auto-
matically determine the sparsity pattern and
adapt it to the current state of the model. This
is extremely useful for kinetic models, where
one program can generally read in many differ-
ent kinetic models, each having its own sparsity
pattern. The occurrence information can then
be used by the modeler to estimate the potential
of exploiting sparsity, and also as input into
sparse linear algebra solvers such as the Harwell
MA48 libraries [8].

1The current implemention is for FORTRAN code, how-
ever, the approach is valid for all procedural programming
languages.

271UPGRADING COMBUSTION CHEMISTRY CODES



It is important to recognize that there is a
fundamental difference between automatic dif-
ferentiation (AD) and partial derivatives com-
puted by symbolic computing environments
such as Maple and Mathematica. On the one
hand, AD generates a segment of code that can
evaluate values for partial derivatives of the
dependent variables at any given values for the
independent variables. In particular, symbolic
expressions for the partial derivatives are never
constructed at any point. On the other hand, a
symbolic computing environment will (automat-
ically) derive symbolic expressions for the par-
tial derivatives, and then encode these expres-
sions as a subroutine to evaluate derivative
values, if this is required. The disadvantage with
this latter approach is that the symbolic expres-
sions for partial derivatives can grow very rap-
idly in complexity, whereas the AD approach of
only computing values remains a priori bounded
in terms of memory usage and computational
cost [7].

The AD component of DAEPACK is one of
several software tools available for obtaining
numerical values of derivatives of functions
coded in imperative programming languages
such as C, C��, and Fortran. Several variants of
AD exist [7], essentially differing by how the
chain-rule is applied to the underlying elemen-
tary operations of the target code, however,
most AD tools produce derivative code via one
of two ways. The first is by using the operator
overloading features of several modern pro-
gramming languages, including C�� and For-
tran-95. Operator overloading is an advanced
programming feature that enables a user to
redefine mathematical operators (e.g., �, �, .,
and /) for user-defined data types. AD tools
employing this technique provide special data
types for selected program variables in the code.
These data types carry with them the informa-
tion necessary for computing derivative values.
The user can redeclare certain program vari-
ables to be this data type and the compiler will
generate automatically new instructions for
computing the derivative values. Some tools
employing this approach are ADOL-C [9],
ADOL-F [10], BC1 [11], and GC1 [12]. The
other main approach for producing derivative
code is source-to-source transformation. Using
compiler technologies, new source code for

evaluating the derivative values is generated
from the original source code evaluating the
function of interest. The advantage of this ap-
proach is that portable code is generated. Also,
the user does not need to have access to a
compiler which supports operator overloading.
In many of these source-to-source tools, rather
than requiring the user to redeclare selected
variables, the user must simply specify which of
the program variables are independent and
dependent variables. The AD tool will automat-
ically identify which intermediate variables are
directly involved in the computation of the
derivatives. In the operator overloading ap-
proach, it is often the responsibility of the user
to identify these active intermediate program
variables manually. Some tools employing
source-to-source transformation are JAKEF
[13], GRESS [14], PADRE2 [15], ADIFOR
[16], Odyssée [17], TAMC [18], and DAEPACK
[6].

DAEPACK provides several options for com-
puting derivative values. The option applied in
this paper is very similar to the algorithm used
in ADIFOR. Specifically, the reverse mode is
applied at the statement level and the overall
derivative values are propagated through the
code with the forward mode. The implementa-
tion in DAEPACK has been designed from the
beginning for efficient accumulation of sparse
derivative matrices. In the sparse forward mode
used in this paper, only nonzero derivative
values are propagated and carefully optimized
utility routines are provided to reduce the over-
heads associated with working only with non-
zero entries. ADIFOR also provides a library,
SparsLinC, for computing sparse derivative ma-
trices. Another option available in DAEPACK
for exploiting sparsity is to use seed matrix
compression [7] in conjunction with the sparsity
pattern information. However, basic row or
column compression is unsuitable for the Jaco-
bians considered in this paper because they all
contain some dense rows and columns.

In addition to generating code for derivative
evaluation and sparsity pattern determination,
DAEPACK provides several components for
generating other codes evaluating information
necessary to perform advanced numerical cal-
culations. For example, given a Fortran source
code evaluating a model, DAEPACK provides a

272 D. A. SCHWER ET AL.



component that generates new code computing
the natural interval extension of the model [19].
This new code may be used, for example, to
solve systems of equations using interval New-
ton/generalized bisection. Another component
generates new code computing the convex re-
laxations of nonconvex functions in the model
[20]. This code is necessary for many global
optimization and non-convex mixed integer
non-linear programming algorithms. Finally, a
component has been developed to generate the
information necessary to perform reliable and
correct numerical integration and parametric
sensitivity analysis of models containing discon-
tinuities [21–23]. This DAEPACK component
generates new code that allows the user to lock
the model so that it evaluates a smooth func-
tion. This is achieved by setting a flag that fixes
the trace of statements executed despite the
presence of IF statements and discontinuous
intrinsic functions such as MIN and MAX. This
new code also extracts the discontinuity func-
tions associated with the discrete events, which
are necessary for performing simulation and
sensitivity analysis correctly and efficiently.

The current paper applies DAEPACK to two
relatively simple programs used extensively by
the combustion community and included with
the CHEMKIN-II packages [24, 25]. Both
programs simulate a constant-pressure batch
reactor. The first program, CONP, computes
only the simulation, while the second program,
SENKIN [26], computes the simulation with
sensitivities. We first construct the model and
then outline the solution techniques used for
solving the model. We then apply DAEPACK
to the system and examine the sparsity of some
common, large scale kinetic systems and the
efficiency of analytical derivative calculations as
compared to numerical differences. Then we
implement new solvers into the CONP and
SENKIN code and evaluate the performance of
using DAEPACK and the new solvers with
CONP and SENKIN.

GOVERNING EQUATIONS

The system we examine in detail solves the
adiabatic, constant pressure problem for a per-
fectly stirred, batch reactor. This system was

chosen for its simplicity, yet it has many things
in common with more complex systems. The
governing ordinary differential equations are
given below:

�
dYi

dt
� Wiwi (1)

�Cp

dT
dt

� � �
k�1

N

Wkhkwk (2)

where � is the gas density, T is the temperature,
Cp is the mixture specific heat, Yi is the mass
fraction, Wi is the molecular weight, wi is the net
species production rate, and hi is the enthalpy of
species i. The code uses the CHEMKIN-II
library to calculate both the thermodynamic
properties as well as the chemical production
and destruction rates. The basic chemical equa-
tions are summarized here, but the interested
reader should consult the original CHEMKIN
report for more details.

For this paper, we consider an elementary
reaction system with N species and M reactions.
In general, any reaction j is described by its
stoichiometric coefficients:

�
i�1

N

� �ijAi º �
k�1

N

� �kjAk (3)

where ��ij and ��ij are the stoichiometric coeffi-
cients for species i, reaction j. For elementary
reactions, each reaction rate �j is calculated as:

rj � kf, j �T� �
k�1

N

Ck
� �kj � kb, j �T� �

k�1

N

Ck
� �kj (4)

where Ck is the concentration of species k, kf,j is
the forward-rate temperature dependent term,
and kb,j is the backward-rate temperature de-
pendent term. For the majority of reactions, the
forward-rate temperature dependent term kf,j is
calculated using Arrhenius coefficients, kf, j

� AjT
njexp��Ea, j/RT�, where Aj is termed the

A-factor for reaction j. The backward tempera-
ture dependence is either determined in a sim-
ilar manner, or more often calculated through
equilibrium arguments using the thermo-chem-
ical data. The concentration of species k can be
expressed in terms of the density:

273UPGRADING COMBUSTION CHEMISTRY CODES



Ck � �Yk/Wk (5)

and the density in turn is related to the species
mass fraction by the ideal gas law:

��P, T, Yi� �
P

RT � �
i�1

N Yi

Wi
��1

(6)

Third body reactions also play an important role
in many of these reaction mechanisms. Third
body reactions are written as:

rj � kf, j �T�CM, j �
k�1

N

Ck
� �kj � kb, j �T�CM, j �

k�1

N

Ck
� �kj

(7)

where CM,j is the third body effective concen-
tration, calculated as:

CM, j � �
i�1

N

�ijCi (8)

where �ij is a third-body efficiency and varies for
different reactions and different species. �ij is
generally one for most of the minor species but
may vary for the major species. Because of this,
the third body concentration is calculated in
CHEMKIN as:

CM, j � �
i�1

N

Ci � �
i�1

N

�ijCi (9)

where �ij � �ij � 1. In addition to these simple
third body reactions, CHEMKIN-II provides
means for calculating pressure dependent third
body reactions, which tend to be complex non-
linear functions whose descriptions are not re-
quired here. Please consult the CHEMKIN
papers for a complete explanation and discus-
sion of them.

The net molar production rate for any given
species is then described in terms of the indi-
vidual reaction rates and their associated stoi-
chiometric coefficients:

wi � �
j�1

M

�� �ij � ��ij� rj (10)

We investigate the constant-pressure batch re-
actor for three specific chemical kinetic mecha-

nisms indicative of the type of chemical kinetic
systems that are becoming more prevalent, ex-
amining calculations for both simple simula-
tions, and simulations with sensitivities com-
puted for the reaction A-factor parameters. All
three systems are described within the
CHEMKIN-II framework and are available on
the internet.

The first mechanism we examine is the GRI-
Mech 3.0 methane/air mechanism [27]. The
GRI mechanism is a well documented system
and has been used extensively for both spatially
homogeneous and non-homogeneous [28, 29]
systems. Version 3.0 of this mechanism has 53
species, 325 reactions, and contains extensive
nitrogen chemistry. The specific case examined
for this paper is a stoichiometric mixture of
methane and air at one atmosphere and 1,500
K. We seed the simulation with a small amount
of O and H radicals to start the simulation.

The second mechanism we investigate is an
acetylene flame soot-formation mechanism
from Wang and Frenklach [30]. This mechanism
has 99 species and 533 reactions. Because the
mechanism focuses on soot production, it in-
cludes chemistry that is considerably different
than the nitrogen/methane chemistry in GRI-
Mech. The specific case examined for this paper
is an acetylene/air mixture with 7.75(mol/mol)%
acetylene by volume at a temperature of 1,000 K
and a pressure of one atmosphere. Again, the
simulations are started with a small concentra-
tion of O and H radicals.

The final mechanism that we investigate is an
n-heptane mechanism of Curran et al. [31].
With 544 species and 2446 reactions, this mech-
anism represents the type of large mechanism
that will become more common in the future.
The specific case examined for this paper is an
n-heptane/air mixture with 0.14(mol/mol)% n-
heptane at a pressure of 12.5 atm and 800 K.

Mechanisms such as these typically rely on
both extensive databases of carefully measured
reactions as well as the incorporation of reac-
tions based on generalized reaction families and
reaction rules. Extensive and careful analysis is
required to determine the correctness and va-
lidity of large and complex mechanism such as
these. Any enhancement to robustness and ef-
ficiency that can be obtained with the current

274 D. A. SCHWER ET AL.



infrastructure of codes would be a tremendous
benefit to these analyses.

SOLUTION PROCEDURE

We first look at the solution of the constant
pressure problem as described by Eqs. 1 and 2
without calculating sensitivities. For stiff prob-
lems such as most chemical kinetic problems,
the most popular approach is a variable order,
variable time-step BDF method originally at-
tributed to Gear [32]. To use BDF methods, we
first write the system in a general way,

F �Ż, Z, t, p� � 0 (11)

subject to the initial conditions,

� �Ż �t0�, Z �t0�, t0, p� � 0 (12)

where Z is our vector of dependent variables, Ż
is the time derivative of our vector of dependent
variables, t is our independent variable (in this
case, time), and p are the parameters of the
problem. This equation describes general differ-

ential-algebraic equation (DAE) systems; an
ODE system is a subset of the above where

F �Ż, Z, t, p� � IŻ � f �Z, t, p� � 0 (13)

where I is the identity matrix. For an Nth order
BDF method, we discretize Ż as:

Żn�1 � �
i�0

N

�iZ�n�1��i (14)

where n is the current time-step. The coeffi-
cients �i are typically a function of both the
order N and the time-step h of the computation,
and are discussed in detail in [32, 33]. The full
discretized equation that is solved by the BDF
method is written as:

F � �
i�0

N

�iZ�n�1��i, Zn�1, tn�1, p� � 0 (15)

Using a Newton method to solve the above
non-linear equation, we obtain the iterative
equation:

Zn�1
�k�1� � Zn�1

�k� � J�1G �Zn�1
�k� , Zn, Zn�1, . . . , Z�n�1��N, tn�1, p� (16)

where G is the discretized form of F, and k is the
iteration level. The Jacobian J is defined as:

J � �0
	F
	Ż

�
	F
	Z

(17)

Note that the above expression simplifies for
ODE systems to the following:

J � �0I �
	f
	Z

� �0I � J� (18)

Extensive research has gone into creating
efficient, robust BDF solvers with strict error
control. Most popular methods work by mini-
mizing the number of Jacobian evaluations and
LU decompositions required, typically by reus-
ing old Jacobians from previous time-steps and
carefully monitoring the convergence rate of the
quasi-Newton iteration to ensure good conver-
gence. The heuristics for these programs are
quite complex and require years of adjusting to
obtain optimum and robust performance. For
ODE systems, the VODE package [34] has

obtained widespread acceptance. It uses up to a
5th-order BDF method with a variable time-
stepping procedure to obtain results within
specified error bounds. For general DAE sys-
tems, DASSL [33] has gained widespread accep-
tance, and similarly uses up to a 5th-order BDF
method with a variable time-stepping proce-
dure. For very large systems, even with the use
of defered Jacobians, the Jacobian calculation
and LU factorization are still the most costly
parts of the simulation. Both of these solvers
assume dense, meaning that most of the ele-
ments of J are non-zero, or banded linear
systems. However, many of the large systems
encountered in combustion simulations are ex-
tremely sparse but lack any sort of regular
structure such as bands. For these systems,
significant gains in efficiency can be made by
exploiting this sparsity in the Jacobian evalua-
tions and in the linear algebra using direct
sparse Gauss elimination. DSL48S [35], based
on DASSL, was written to take advantage of
this form of sparsity by using the Harwell MA48

275UPGRADING COMBUSTION CHEMISTRY CODES



sparse linear algebra libraries [8]. For computa-
tions contained in this paper, we use VODE,
DASSL, and DSL48S for our simulations.

Parametric sensitivities for the dynamic sys-
tem described above can be found by solving
auxiliary sensitivity equations along with the
original system. For the ith parameter, the
additional sensitivity equations are:

	F
	Ż

ṡi �
	F
	Z

si �
	F
	pi

� 0 (19)

subject to the initial conditions,

	�

	Ż
ṡi �t0� �

	�

	Z
si �t0� �

	�

	pi
� 0 (20)

where si �
	Z
	pi

.

For each parameter pi, there are N � 1
sensitivity variables for the system defined by
Eqs. 1 and 2, where N is the number of species.
There are two important observations to note
about the above sensitivity equations. The first
observation is that clearly the original dynami-
cal system is not coupled to the sensitivity
equations, and can be solved independently of
the sensitivity equations, although the sensitivity
equations are dependent on the dynamical sys-
tem. The second observation is that the sensi-
tivity equations are linear in the sensitivity
variables with a Jacobian matrix identical to that
employed for the state equations.

Unlike the simulations, there are several
competing methods for solving the sensitivity
equations. In this paper we investigate three
different methods. The first method is the stag-
gered direct method [36, 37]. It divides each
time step into two computations, first comput-
ing the original system, and then computing the
sensitivity equations. Because the sensitivity
equations are linear, this method directly in-
verts the system to solve the sensitivity equa-
tions. By doing a direct inversion, however, the
method must factor the Jacobian at every step,
which can become very expensive for large
systems.

The second method is called the simulta-
neous corrector method, described by Maly and
Petzold [38]. This solution procedure treats the
system as one large non-linear dynamical sys-
tem, and takes advantage of the resultant struc-

ture of this system to obtain an efficient method
for solving the sensitivity equations. The advan-
tage of this method is that the Jacobian does not
need to be factored at every step.

The third method commonly used is the
staggered corrector method, and is described in
Feehery, Tolsma, and Barton [35]. This method,
as in the staggered direct method, separates the
solution procedure at each time step into two
phases, solving the original system and then
solving the sensitivity equations. Unlike the
staggered direct method, however, the stag-
gered corrector method solves the sensitivity
equations iteratively using the deferred Jaco-
bian. By using an iterative solution procedure,
the Jacobian again is not required to be factored
at every step, and can thus provide a substantial
increase in performance.

The original SENKIN code uses the stag-
gered direct method for computation, as imple-
mented in DASAC [37]. For the computations
reported in this paper, we use the DASPK3.0
[39] and DSL48S [35] libraries for the simula-
tions with sensitivities. All three solvers are
based on the DAE-solver DASSL. DASPK in-
corporates all three methods for solving sensi-
tivity systems, and provides an enhancement to
the DASAC implementation for ill-conditioned
problems [39]. Like DASSL, it uses dense linear
algebra for factorizations and back substitu-
tions. DSL48S uses the staggered corrector
method for computing sensitivities, and as men-
tioned previously uses the Harwell MA48 sparse
linear algebra libraries.

All of these programs provide the ability to
calculate numerical Jacobians or use a user
supplied analytical Jacobian. For many sys-
tems, a user provided analytical Jacobian can
make the solution procedure more robust,
and can also increase the efficiency tremen-
dously. DAEPACK provides a method for gen-
erating the necessary analytical Jacobians easily
and integrating them with different solvers.

APPLICATION OF DAEPACK

For this paper, we use DAEPACK to upgrade
two codes that come with the CHEMKIN-II
library called CONP and SENKIN. CONP
solves the constant pressure system described in

276 D. A. SCHWER ET AL.



Eqs. 1 and 2 using the VODE integration
package. The VODE package requires that the
user encapsulates the function f (Z, t, p) in Eq.
13 as an external subroutine, and pass it along
with the dependent variables, time, and param-
eters to the VODE subroutine. For the CONP
program, the vector of dependent variables is
simply Z � (Yi , T)T. The functional form of f is
easily determined from Eqs. 1 and 2 and is
encapsulated into the subroutine FUN. Using
CHEMKIN-II, the actual length of the subrou-
tine FUN is quite small (20 lines), as most of the
real computational work is done within the calls
to CHEMKIN-II library subroutines (which re-
mained unchanged throughout this work).
SENKIN solves the same system as CONP, plus
the sensitivty of the system to the reaction
A-factors using the DASAC solver [37].
DASAC is based on the DASSL DAE solver
and uses the staggered direct method for com-
puting sensitivities. To use DAE based solvers
we must compute the residual function F(Ż, Z,
t, p) as defined in Eq. 11, which is carried out in a
subroutine called RES. Constructing RES from
FUN is very simple. For this system, RES is
again quite small, as most of the work is carried
out in the CHEMKIN-II library subroutine.

The authors of CONP and SENKIN opted to
use the finite-difference Jacobian generation
subroutine that comes as part of VODE and
DASSL to determine the Jacobian matrices J�
and J. To switch to analytical Jacobians, we first
run the source code through the DAEPACK
code analyzer. DAEPACK requires all of the
main subroutines, and the libraries that the
main subroutines access (in this case, the
CHEMKIN-II libraries), be available as source
code. DAEPACK then generates a subroutine
that computes the necessary derivatives for the
Jacobian using the sparse forward mode analyt-
ical Jacobian procedure, as well as the sparsity
information needed by the Harwell MA48 sub-
routine. The user then writes a small wrapper
subroutine to interface the generated code with
the desired solver. Several examples of wrap-
pers for commonly used solvers are included
within the DAEPACK distribution.

Using sparsity information returned from the
automatically generated code, we first examine
the sparsity of the three chemical systems men-
tioned previously, given the original formula-

tion in CONP and two alternative formulations
for the same constant-pressure problem. Sec-
ond, we examine the improvement in perfor-
mance using analytical Jacobians with all three
systems. Third, for the sparse systems, we exam-
ine using both analytical Jacobians and sparse
linear algebra to improve performance using
different solvers. Finally, we examine the effect
of solution technique, sparsity, and analytical
derivatives on the sensitivity calculations.

EVALUATION OF ANALYTICAL
JACOBIANS

The destruction and formation of most chemi-
cal species is usually dominated by only a hand-
ful of reactions. Reflecting this physical reality,
most large chemical kinetic models in the liter-
ature are extremely sparse in terms of interac-
tions between different species. That is, physi-
cally each species reacts with at most only a
small number of the total number of species
which exist. Most solution methods in current
use, however, rely on dense techniques and do
not attempt to take advantage of this inherent
sparsity. For this section, we use DAEPACK
generated code to examine the sparsity of the
actual numerical simulations, and determine
ways to exploit this sparsity in numerical solvers.

For numerical solvers, the sparsity of the
system is dependent on the non-zero entries in
the Jacobian J, as defined in Eq. 17. For the
original formulation where Z � (Yi , T)T, inspec-
tion of the original conservation Eqs. 1 and 2
reveals that the Jacobian J is totally dense. The
reason for this is that every concentration found
in the rate Eq. 7 is dependent on every species
mass fraction Yi through Eqs. 5 and 6. This
results in very poor performance for the current
automatic analytical derivative techniques, and
also for sparse linear algebra. In the resulting
computations, we refer to this as the density
formulation.

The choice of Z � (Yi , T)T is a common one,
but not the only one. An equivalent system can
be constructed for the constant pressure prob-
lem by using the species moles ni and the system
volume V as dependent variables instead of
species mass fractions, where ni � CiV. The
species conservation equations are simply

277UPGRADING COMBUSTION CHEMISTRY CODES



dni

dt
� wiV (21)

The differential equation for the volume can be
derived from the ideal gas law V � nRT/P. For
constant pressure, the differential equation for
volume is

dV
dt

�
V
n �

k�1

N

wi V �
V

�CpT �
k�1

N

Wkhkwk (22)

For this case, the dependent variables become
Z � (ni , T, V)T and the system of differential
equations is Eqs. 21–22 with the energy Eq. 2.
The advantage of this system is that the Jaco-
bian is now sparse, unlike our original formula-
tion, and we have kept an ODE formulation.
The disadvantage of this system is that both ni

and V are extensive properties, whereas the
input of CONP is in mole-fractions, tempera-
ture, and pressure. Because of this, we have
freedom in selecting the initial volume and total
moles to anything satisfying PV � nRT. For the
simulations presented here, we select the initial
volume such that initially the species moles are
equivalent to the species mole-fractions. Be-
cause the mole-fractions are the same order of
magnitude as the mass-fractions, this allows us
to use the same relative and absolute error
tolerances that we used for the density simula-
tions. In the subsequent computations, we refer
to this as the mole formulation.

We can also rearrange the original system
Z � (Yi , T)T and add � to the dependent
variable vector Z. Thus, Z � (Yi , T, �)T becomes
our vector of dependent variables; and the
additional equation becomes:

� � ��P, T, Yi� � 0 (23)

where �(P, T, Yi) is computed from the ideal gas
law, Eq. 6. The advantage of this system is that
it solves the exact same equations as the original
system, but the introduction of the additional
dependent variable � now makes the Jacobian
matrix J sparse. The system, however, is now a
DAE system, and a DAE solver such as DASSL
or DSL48S must be used to solve it, as discussed
above. This is less of an issue when computing
sensitivities, because the most popular pro-
grams for computing sensitivities (DASPK,
DASAC, DSL48S) are all based on the DAE

solver DASSL. In the resulting numerical cal-
culations, we refer to this as the augmented
density formulation.

Using the above formulations, we examined
the sparsity for all three mechanisms mentioned
previously. Although the mechanisms were
fairly large, we found that the Jacobians for
these mechanisms were still very dense, even for
the sparse formulations. The GRI-Mech was
90% dense, while the acetylene flame was 63%
dense. Only the n-heptane was significantly
sparse, with 90% sparsity.

Upon inspection of the CHEMKIN-II librar-
ies, we found that this was caused by third body
reactions. Because the third body concentration
was calculated through Eq. 9, any species in-
volved as a reactant or product in a third-body
reaction had a dense row for the Jacobian. This
can be circumvented by using a slightly different
method for calculating the third-body concen-
tration. Calculating this concentration as:

CM, j � C � �
i�1

N

�ijCi (24)

where the concentration C is calculated from
the ideal gas law C � P/RT. This is identical to
the original formulation, but representing it this
way produces a much sparser Jacobian for the
three mechanisms, because the majority of �ij’s
are set to zero. A comparison of the sparsity
pattern for the original formulation, mole for-
mulation, and augmented density formulation is
given in Table 1 and Figs. 1–3 for all three
mechanisms with and without the revised third-
body treatment. The subsequent numerical
computations were done with the revised third-
body treatment to give a fair representation of
the benefit of using sparse solvers.

Next we compared CPU timings for the func-
tion evaluation, the Jacobian evaluation with
analytical derivatives, and LU factorizations.
These three calculations constitute the majority
of the computational time done by all the
solvers. This is shown for all three mechanisms
and all three formulations in Table 2. As shown
in this table, changing the formulation does not
significantly affect the CPU timing for the func-
tion evaluation. This is because the large major-
ity of time in the function evaluation is spent

278 D. A. SCHWER ET AL.



calculating the reaction rates, which is the same
regardless of the formulation.

The CPU timings for the Jacobian evaluation
shown in Table 2 are more interesting. First, we
point out that the current implementation of
analytical derivatives performs poorly for the
original density formulation. This is because of
two reasons: the sparse forward mode analytical
derivative computation becomes more efficient
as the sparsity of the system increases, whereas
the density formulation is totally dense. Also,
the current implementation in DAEPACK em-
ploys sparse data structures, which creates ad-
ditional overhead and indirect references for
dense systems that are unnecessary. So, it is
necessary to take advantage of sparsity to obtain
more efficient Jacobian calculations. Even with
the sparse formulations, mechanisms as small

and dense as the GRI-Mechanism are only
slightly more efficient with the current imple-
mentation of analytic Jacobians. However, the
acetylene soot mechanism shows a factor of two
speedup in the Jacobian evaluation, and the
n-heptane mechanism has nearly a 12-fold
speedup in the Jacobian calculation, which
should improve the speed of the simulation
substantially.

In addition to the Jacobian evaluation, Table
2 also shows the LU factorization cost for the
entire Jacobian J in Eq. 17. The LU factoriza-
tion is only shown for the augmented density
formulation, although the other formulations
are similar for the dense calculations, and the
mole formulation LU factorization is similar for
the sparse LU factorization. The sparse LU
factorization is conducted using the MA48 li-

TABLE 1

Sparsity of the Chemical Kinetic Mechanisms. Dense Refers to the Original Density
Formulation, and Sparse Refers to the Mole Formulation and the Augmented Density

Formulation, Which Give Exactly the Same Sparsity Pattern

GRI-Mech Acetylene n-heptane

Non-zero
Elem.

Percent
Sparse

Non-zero
Elem.

Percent
Sparse

Non-zero
Elem.

Percent
Sparse

Dense 2,916 0% 10,000 0% 297,025 0%

Sparsea 2,679 11.4% 6,567 35.6% 30,095 89.9%
Sparseb 1,494 50.6% 2,742 73.1% 14,154 95.3%

a Original CHEMKIN-II treatment of third body concentrations.
b Third-body concentrations calculated by Eq. 24.

Fig. 1. Sparsity of GRI-Mech 3.0 mechanism. 54 dependent variables. With (right) and without (left) third-body sparse
formulation.

279UPGRADING COMBUSTION CHEMISTRY CODES



braries. The results here show that there is a
high overhead cost to using sparse linear alge-
bra for small, relatively dense systems. Only
when we get to large, sparse systems such as the
n-heptane system, can we really take advantage
of sparse linear algebra, and improve the LU
factorization substantially. It is interesting to
note that for all cases considered in Table 2 the
cost of a Jacobian evaluation is greater than the
cost of a Jacobian factorization, which is some-
what contrary to the assumptions made in the
design of sensitivity algorithms.

For the sensitivity calculations in SENKIN,
we also examine evaluating 	F/	p analytically.
This computation is required for all three meth-

ods discussed above. Again, we use DAEPACK
generated code to do these calculations, al-
though now the calculation of sparsity is not
required. The timing results for the 	F/	p cal-
culations are shown in Table 3. For the one
parameter calculation, one can see that the
finite difference derivative is by far the most
efficient means of calculating 	F/	p. This is
because DAEPACK has been optimized to do
much more complex, sparse derivatives, which
requires a high overhead cost for creating the
sparse structures to do the sparse forward mode
analytical derivative calculation. For a single
parameter, we would expect a much better
result by doing a regular forward mode calcula-

Fig. 2. Sparsity of Wang’s acetylene-soot mechanism. 100 dependent variables. With (right) and without (left) third-body
sparse formulation.

Fig. 3. Sparsity of Curran’s n-heptane mechanism. 545 dependent variables. With (right) and without (left) third-body sparse
formulation.

280 D. A. SCHWER ET AL.



tion [7]. As the number of parameters grows,
the efficiency of the sparse analytical derivative
calculation becomes apparent. For the full set of
reactions, the speedup we see from using analyti-
cal derivatives ranges from nine (for the GRI-
Mech) to 37 (for the n-heptane mechanism).

SIMULATION RESULTS

The next set of results (shown in Table 4
through Table 6), are the simulation results for
the three mechanisms. Here we show the calcu-
lations for three different commonly used solv-

TABLE 2

CPU Timings for Function and Jacobian Evaluations, and LU Factorizations, for Each
of the Three Mechanisms. Jacobians Calculated Analytically Using DAEPACK. Note

that the LU Factorization is Only Shown for the Augmented Density Formulation,
However all Three Formulations Behave Similarly for the Dense Solver, and the Mole

and Augmented Formulations Behave Similarly for the Sparse Solver. Timings are
Given in Seconds and Parenthetically as a Ratio to Function Evaluations

GRI-Mech Acetylene-soot n-heptane
N � 53, M � 325 N � 99, M � 498 N � 544, M � 2446

Function Evaluation
Density 5.46 � 10�4 8.33 � 10�4 7.94 � 10�3

Mole 5.23 � 10�4 7.97 � 10�4 7.2 � 10�3

Aug. Density 5.51 � 10�4 8.35 � 10�4 8.09 � 10�3

Jacobian Evaluation
Originala 0.0300 (55) 0.0841 (101) 4.34 (546)
Density 0.063 (115) 0.16 (192) 4.15 (523)
Mole 0.0283 (54) 0.0486 (61) 0.516 (72)
Aug. Density 0.022 (41) 0.040 (48) 0.338 (43)

LU Factorization
Dense 8.0 � 10�5 3.6 � 10�4 0.81
Sparse 7.8 � 10�4 2.9 � 10�3 0.25

a Density formulation and numerical derivatives.

TABLE 3

CPU Timings for 	F/	p Calculation Using Analytical Derivatives Computed from
DAEPACK. Timings are Given in Seconds and Parenthetically as a Ratio to Function

Evaluations

GRI-Mech Acetylene-soot n-heptane
N � 53, M � 325 N � 99, M � 498 N � 544, M � 2446

Function Evaluation
Density 5.46 � 10�4 8.33 � 10�4 7.94 � 10�3

Aug. Density 5.51 � 10�4 8.35 � 10�4 8.09 � 10�3

	F/	p Evaluation, 1 parameter
Numerical 0.00109 (2) 0.0017 (2) 0.0159 (2)
Density 0.0055 (10) 0.0086 (10) 0.048 (6.0)
Aug. Density 0.0055 (10) 0.0086 (10) 0.049 (6.0)

	F/	p Evaluation, 100 parameters
Numerical 0.0551 (101) 0.0841 (101) 0.802 (101)
Density 0.010 (18) 0.015 (18) 0.07 (8.8)
Aug. Density 0.010 (18) 0.015 (18) 0.07 (8.8)

	F/	p Evaluation, M parameters
Numerical 0.178 (326) 0.416 (499) 19.4 (2447)
Density 0.020 (37) 0.039 (47) 0.49 (62)
Aug. Density 0.019 (37) 0.039 (47) 0.53 (65)

281UPGRADING COMBUSTION CHEMISTRY CODES



ers, with all three formulations. We could not
use the augmented density formulation with
VODE because VODE is an ODE (not a DAE)
solver, and we did not run the density formula-
tion with DSL48S because the sparse linear
algebra would be useless on a totally dense
system. All of the calculations (except for the
original calculations) use analytical Jacobians.
Relative and absolute tolerances of 10�6 and
10�15 were used, respectively, for the computa-
tions. Results showed no difference between the
three different formulations within the error
tolerances.

There are several interesting details observed
in these simulations. The first is the difference
between the VODE and DASSL (and thus
DSL48S) simulation strategies. VODE has a

very aggressive time-step strategy, resulting in
many error test failures and subsequent LU
factorizations. However, by separating the LU
factorization from the Jacobian evaluation, the
number of Jacobian evaluations still remains
relatively small. This strategy works very well for
small systems (such as the GRI-Mech), where
the cost of the LU factorization is much smaller
than the cost of the Jacobian evaluation. How-
ever, for larger systems, such as n-heptane, this
strategy becomes fairly costly.

As we would expect from Table 2, none of the
improvements in analytical Jacobians or sparse
linear algebra results in faster overall simula-
tions for the GRI-Mechanism (Table 4). Only a
small improvement can be seen with the larger
acetylene-soot mechanism using the new tech-

TABLE 4

Comparison of Simulations for the Methane Reactor at Constant Pressure. Ta � 1,500
K, Pa � 1atm, XCH4

� 0.095, XO2 � 0.190, XN2
� 0.715. 
 � 1 � 10�3 sec. All Except

the Original Formulation use Analytical Jacobians

Solver Formulation
Total CPU
Time (sec) Steps

Funct.
Eval.

Jac.
Eval.

Number of

LU
Fact.

Failures

Conv. Error

VODE Original 1.83 1198 2791 22 156 0 57
VODE Density 2.84 1312 1768 26 184 0 76
VODE Mole 1.83 1212 1625 23 156 0 57
DASSL Density 5.77 1316 1713 74 74 0 9
DASSL Mole 3.12 1344 1746 68 68 0 8
DASSL Aug. density 2.75 1165 1532 78 78 0 15
DSL48S Mole 3.12 1248 1691 70 70 0 10
DSL48S Aug. density 2.90 1261 1707 76 76 0 16

TABLE 5

Comparison of Simulations for the Acetylene Reactor at Constant Pressure. Ta � 1,000
K, Pa � 1atm, XC2 H2

� 0.0775, XO2
� 0.1938, XN2

� 0.7287. 
 � 1 � 10�3 sec. All
Except the Original Formulation use Analytical Jacobians

Solver Formulation
Total CPU
Time (sec) Steps

Funct.
Eval.

Jac.
Eval.

Number of

LU
Fact.

Failures

Conv. Error

VODE Original 6.5 1369 6063 39 207 0 77
VODE Density 8.6 1405 2198 36 198 0 73
VODE Mole 5.0 1482 2322 36 224 0 92
DASSL Density 15.2 1337 1938 80 80 0 18
DASSL Mole 5.84 1212 1839 74 74 0 17
DASSL Aug. density 5.6 1340 1968 73 73 0 16
DSL48S Mole 5.4 1187 1896 69 69 0 11
DSL48S Aug. density 5.3 1376 2046 74 74 0 13

282 D. A. SCHWER ET AL.



niques, and most of the simulations are compa-
rable in CPU cost. The only notable improve-
ment for the acetylene-soot case is found with
using the VODE solver and the mole formula-
tion, because the system is still small enough to
take advantage of the VODE heuristics, and the
analytical Jacobian calculation is less expensive
for the mole formulation.

For the larger n-heptane system (Table 6) we
see substantial improvements by changing solv-
ers, using analytical Jacobians, and exploiting
sparsity. Just by switching to the DASSL solu-
tion strategies, we see a small improvement
because of the reduced number of LU factor-
izations. By using sparse derivative formulations
and the DASSL strategies, we obtain a greater
speed up of around 2.5, because of the faster
analytical Jacobian calculation. By taking ad-
vantage of sparse linear algebra, the speed
improves by a factor of 10 over the original
solver, and brings the resultant simulation time
down from 6 minutes to a little over half of a
minute.

From the above calculations, it is easily seen
that there is no best numerical strategy for all
cases. For kinetic systems, knowing the sparsity
pattern of the kinetic system is essential in
determining whether sparse linear algebra or
dense linear algebra is most appropriate, or
even (for small mechanisms) whether analytical
or numerical Jacobians are more appropriate. It
currently appears that only the larger, sparse
kinetic systems take full advantage of analytical
derivatives and sparse linear algebra, but the

benefit for these systems is quite large, com-
pared to only a small penalty for smaller sys-
tems.

SENSITIVITY RESULTS

The final set of results are for simulations with
the calculation of sensitivities. The SENKIN
program that comes with CHEMKIN II speci-
fies all of the reaction rate A-factors as sensitiv-
ity parameters, saving the results at each step
into an unformatted file. The SENKIN program
uses the density formulation of the constant-
pressure reactor, using the DASAC solver to
compute the simulation and sensitivities with
finite difference Jacobian and 	F/	p calcula-
tions. As metioned previously, we have opted to
replace the DASAC solver with the DASPK and
DSL48S solvers because of their greater flexi-
bility.

Solving for the sensitivities of all reactions for
a given kinetic mechanism is not always desir-
able, primarily because of the sheer size of the
resulting data file. For instance, for the n-
heptane mechanism, storing all of the sensitivity
results for all of the reactions results in a file
that is 10.6 MB for each time-step (assuming
double precision). A typical case such as the
n-heptane simulations presented in Table 6
would result in a file the size of about 8.5
gigabytes. For such large mechanisms, typically
one wants to examine a specific subset of reac-
tions, instead of the full reaction set. For this

TABLE 6

Comparison of Simulations for the n-heptane Reactor at Constant Pressure. Ta � 800
K, Pa � 12.5atm, XnC7H16

� 0.0014, XO2
� 0.0252, XN2

� 0.9734. 
 � 1.8 sec. All
Except the Original Formulation use Analytical Jacobians

Solver Formulation
Total CPU
Time (sec) Steps

Funct.
Eval.

Jac.
Eval.

Number of

LU
Fact.

Failures

Conv. Error

VODE Original 342 863 18302 31 99 0 20
VODE Density 408 920 1536 33 123 0 34
VODE Mole 279 900 1506 32 117 0 29
DASSL Density 309 663 1156 47 47 0 6
DASSL Mole 131 629 1124 44 44 0 7
DASSL Aug. density 132 822 1410 45 45 0 6
DSL48S Mole 34.8 598 1029 47 47 0 7
DSL48S Aug. density 33.8 806 1348 55 55 0 11

283UPGRADING COMBUSTION CHEMISTRY CODES



reason, in addition to running the cases for the
full set of parameters (M parameters) as the
original SENKIN, we also ran it for 1 parameter
and 100 parameters. We have disabled writing
out the sensitivity results to a file, because of the
extreme file size and cost of I/O. For many of
the smaller sensitivity calculations, we did com-
pare the results with the original sensitivity
calculation to ensure that the newer implemen-
tations were correct.

The results we present use two different
formulations, the original dense formulation
and the sparse augmented density formulation.
For the density formulation, we use numerical
Jacobians because this calculation is faster
than the analytical Jacobian calculation for all
three kinetic mechanisms using the current
DAEPACK package. For the augmented den-
sity formulation, we look at using both finite
difference and analytical derivatives for Jacobi-
ans and 	F/	p evaluations, and the effect of
using sparse linear algebra instead of dense
linear algebra for the solvers. Finally, we com-
pare the three main methods for calculating
sensitivities; the simultaneous corrector (Si.C.)
method, the staggered corrector (St.C.)
method, and the staggered direct (St.D.)
method. Only the St.C. method is available for
DSL48S, so we only show those results. We
would like to pinpoint, for each kinetic mecha-
nism given Np parameters, which method, Jaco-
bian evaluation, 	F/	p evaluation, and sparse/
dense linear algebra provides the fastest
solutions. We use DASPK to compute the sim-
ulations with dense linear algebra, and DSL48S
to compute the simulations with sparse linear
algebra.

The full set of results are shown in Tables 7
through 9 for the GRI-Mechanism, Tables 10
through 12 for the acetylene-soot mechanism,
and Tables 13 through 15 for the n-heptane
mechanism. For each of the tables, we show the
effect of using the different formulations, sen-
sitivity calculation methods, analytical versus
finite difference Jacobians, and dense versus
sparse linear algebra. For each of the cases, we
use the same initial conditions that were used
for the original simulation runs from the previ-
ous section.

Before discussing individual results, first we
make some general observations about these

calculations. The first observation is that the
Si.C. and the St.C. methods show a large advan-
tage when solving one parameter systems over
the St.D. method, and a smaller advantage
when solving 100 parameters. This is because of
the much smaller number of factorizations re-
quired for these methods compared to the
direct method. As the number of parameters
increases, the percentage of time spent factor-
ing the Jacobian decreases and the advantage
gets washed out. For a large set of parameters,
the St.D. method becomes the most efficient.
This is because it uses a current factored Jaco-
bian at every time-step, and thus can take larger
time-steps than the other methods. By taking
fewer total time-steps, this method does less
computations for several hundred parameters,
even though it factors the Jacobian at every
step. These results have also been seen in
previous studies [39].

Another observation is the small difference
between the Si.C. and St.C. methods for many
of the cases. Although the DASPK results com-
paring the two methods gives a slight advantage
to the simultaneous corrector method, this ap-
pears to be caused by a problem with the
current staggered corrector implementation in
DASPK, which causes many more error test
failures for the St.C. method than the Si.C.
method, resulting in more time-steps and Jaco-
bian evaluations. Comparing these values with
the DSL48S St.C. implementation shows that
the error test failures should more closely agree
with the Si.C. method.

For all cases with one parameter, the finite
difference 	F/	p provided the most efficient
results. This is because of the poor efficiency of
the analytical derivative calculation for 	F/	p
with one parameter, shown in Table 3 and
discussed above. For 100 parameters or M pa-
rameters, however, analytical 	F/	p has a clear
advantage for most of the calculations. The
reason is twofold. First, computing analytical
	F/	p compared to finite difference 	F/	p is
much more efficient for large numbers of pa-
rameters, as shown in Table 3. Second, many of
the cases have a considerable difference in the
number of error test failures for the finite
difference 	F/	p compared with the analytical
	F/	p. All of the acetylene soot cases, in partic-
ular, seem to require considerably more steps

284 D. A. SCHWER ET AL.



when using finite difference 	F/	p than analyti-
cal 	F/	p.

The final general observation is that for all of
the cases except the GRI-Mech and acetylene
soot cases with one parameter, DSL48S with the
St.C. method showed the greatest speed in-
crease of any of the methods. This is probably
due to the correct implementation of the St.C.
method, as mentioned above, coupled with the

benefit of sparse linear algebra for the larger
cases. In many cases the advantage of DSL48S
over the other methods was very slight, but for
some cases it was very large (for instance, all of
the n-heptane cases).

The complete timing results are given in
Tables 7 through 9 for the GRI-Mechanism for
1, 100, and 325 parameters. For one parameter,
we see about a 10-fold increase by using the

TABLE 7

GRI-Mechanism. One Parameter

Solver Formulation Method Jac. 	F/	p CPU Time Steps
Jac.

Eval.
Conv.
Fail.

Error
Fail.

DASPK Density Si.C. F.D. F.D. 9 3482 92 0 10
St.C. 11 3413 107 0 12
St.D. 88.5 2557 2559 0 2

Aug. density Si.C. F.D. F.D. 8.1 3106 107 0 6
Anal. 123 3417 124 0 16

Anal. F.D. 7.7 3283 108 0 9
Anal. 129 3563 105 0 11

St.C. F.D. F.D. 9.8 3011 114 0 13
Anal. 93 3020 103 0 10

Anal. F.D. 8.8 3126 114 0 12
Anal. 100 3263 108 0 10

St.D. F.D. F.D. 83.7 2557 2560 0 3
Anal. 154 2557 2560 0 3

Anal. F.D. 63 2556 2559 0 3
Anal. 133 2556 2559 0 3

DSL48S Aug. density St.C. Anal. F.D. 10.3 3207 114 0 17
Anal. 93 3290 107 0 18

TABLE 8

GRI-Mechanism. One Hundred Parameters

Solver Formulation Method Jac. 	F/	p CPU Time Steps
Jac.

Eval.
Conv.
Fail.

Error
Fail.

DASPK Density Si.C. F.D. F.D. 306 3165 94 0 8
St.C. 272 3221 109 0 12
St.D. 306 2756 2760 0 4

Aug. density Si.C. F.D. F.D. 266 3128 114 0 16
Anal. 198 3365 113 0 11

Anal. F.D. 310 3429 111 0 15
Anal. 184 3293 100 0 16

St.C. F.D. F.D. 250 3249 116 0 16
Anal. 159 3061 109 0 9

Anal. F.D. 266 3474 121 0 16
Anal. 161 3170 113 0 19

St.D. F.D. F.D. 281 2767 2771 0 4
Anal. 202 2557 2560 0 3

Anal. F.D. 254 2737 2742 0 5
Anal. 181 2556 2559 0 3

DSL48S Aug. density St.C. Anal. F.D. 663 3629 97 0 7
Anal. 163 3193 105 0 9

285UPGRADING COMBUSTION CHEMISTRY CODES



Si.C. or St.C. methods with finite difference
Jacobian and 	F/	p as opposed to the St.D.
method used in the original SENKIN code. For
100 parameters, no methods stand out as supe-
rior, although the St.C. method is consistently
better than the Si.C. method and St.D. methods
with analytical 	F/	p, and is 1.9 times faster than
the original formulation with the DASPK
solver. For the full set of parameters, the largest
improvement is obtained with using analytical
	F/	p with the staggered corrector method,
although using the St.D. method with DASPK
and dense linear algebra is only slightly less
efficient. Dense versus sparse linear algebra has
only a limited effect on the computational effi-
ciency.

The complete timing results for the acety-
lene-soot model for 1, 100, and 498 parameters
are given in Tables 10 through 12. With one
parameter, the largest improvement in perfor-
mance is again achieved by switching the
method from the St.D. method to either the
Si.C. or St.C. with finite difference 	F/	p.
Smaller improvements are observed with the
use of analytical Jacobians, giving an overall
improvement of over 26 times the original so-
lution procedure. For 100 parameters and 498
parameters, the largest improvements are found
from applying analytical 	F/	p rather than finite
difference 	F/	p. The most efficient method

with 100 parameters is again DSL48S with
analytical Jacobian and 	F/	p, and is 3 times
faster than the original solution procedure. For
the full set of parameters, DASPK with the
St.D. method and analytical derivatives is
slightly better than DSL48S with the St.C.
method, about 3.7 times faster than the original
solution procedure.

Finally, the complete results are given for the
n-heptane mechansims in Tables 13 through 15.
This time, for one parameter, both the solution
method (switching from the St.D. to the Si.C. or
the St.C. methods), plus exploiting sparsity with
analytical Jacobians, give signficant increases in
efficiency. DSL48S with the St.C. method, ana-
lytical Jacobian, and finite difference 	F/	p is by
far the most efficient method, and is approxi-
mately 55 times faster than the original solution
procedure. The benefit of sparsity also domi-
nates the efficiency for 100 parameters, and
even 2446 parameters. For 100 parameters,
DSL48S with analytical Jacobian and 	F/	p is
about five times faster than the original formu-
lation. For the full set of parameters, the num-
ber of steps taken by the St.C. method is much
more than the St.D. method, and the cost of
doing back substitutions for the additional steps
decreases the benefits of using the sparse linear
algebra of DSL48S and the St.C. method. We
have opted to present only a subset of cases for

TABLE 9

GRI-Mechanism. Three Hundred Twenty-Five Parameters

Solver Formulation Method Jac. 	F/	p CPU Time Steps
Jac.

Eval.
Conv.
Fail.

Error
Fail.

DASPK Density Si.C. F.D. F.D. 1026 3165 94 0 8
St.C. 1257 4235 99 0 7
St.D. 818 2756 2760 0 4

Aug. density Si.C. F.D. F.D. 922 3128 114 0 16
Anal. 442 3365 113 0 11

Anal. F.D. 1073 3429 111 0 15
Anal. 416 3293 100 0 16

St.C. F.D. F.D. 891 3345 134 0 22
Anal. 367 3061 109 0 9

Anal. F.D. 922 3402 139 0 28
Anal. 390 3277 123 0 9

St.D. F.D. F.D. 767 2767 2771 0 4
Anal. 367 2557 2560 0 3

Anal. F.D. 734 2737 2742 0 5
Anal. 475 2556 2559 0 3

DSL48S Aug. density St.C. Anal. F.D. 2358 3719 101 0 16
Anal. 377 3172 114 0 13

286 D. A. SCHWER ET AL.



the n-heptane problem with the full set of
parameters. The reason for this is the clear
advantage of using analytical Jacobians, analyt-
ical 	F/	p, and sparse linear algebra. For this
case, DSL48S and the St.C. method is the
fastest solution procedure, but only about two
times faster than the original problem solution,
and only 1.4 times faster than the St.D. method
using analytical Jacobians and 	F/	p.

Like our earlier simulations without sensitiv-
ities, there is no straight forward “best” solution
procedure for calculating sensitivities. It is inti-
mately connected with the number of parame-
ters for which one wishes to calculate sensitivi-
ties, and the general sparsity of the kinetic
system. However, some clear guidelines can be
given. For the larger mechanisms, one always
gains a benefit by exploiting sparsity and analyt-

TABLE 10

Acetylene-Soot Mechanism. One Parameter

Solver Formulation Method Jac. 	F/	p CPU Time Steps
Jac.

Eval.
Conv.
Fail.

Error
Fail.

DASPK Density Si.C. F.D. F.D. 20 3326 121 0 20
St.C. 24 3479 129 0 40
St.D. 393 4150 4160 0 10

Aug. density Si.C. F.D. F.D. 23 3313 145 6 23
Anal. 368 3427 128 0 25

Anal. F.D. 15 3354 126 0 25
Anal. 222 3643 113 0 18

St.C. F.D. F.D. 27 3805 152 0 69
Anal. 179 3252 131 0 25

Anal. F.D. 22 3986 153 0 60
Anal. 184 3383 134 0 34

St.D. F.D. F.D. 380 4161 4173 0 12
Anal. 314 2297 2299 0 2

Anal. F.D. 182 4090 4100 0 10
Anal. 208 2297 2299 0 2

DSL48S Aug. density St.C. Anal. F.D. 16 3163 130 0 27
Anal. 156 3208 122 0 20

TABLE 11

Acetylene-Soot Mechanism. One Hundred Parameters

Solver Formulation Method Jac. 	F/	p CPU Time Steps
Jac.

Eval.
Conv.
Fail.

Error
Fail.

DASPK Density Si.C. F.D. F.D. 492 3326 121 0 20
St.C. 520 3813 134 0 70
St.D. 871 4150 4160 0 10

Aug. density Si.C. F.D. F.D. 502 3313 145 6 23
Anal. 540 3403 159 9 25

Anal. F.D. 486 3354 126 0 25
Anal. 383 3643 113 0 18

St.C. F.D. F.D. 617 4385 133 0 63
Anal. 323 3271 133 0 31

Anal. F.D. 537 4035 140 0 46
Anal. 309 3284 137 0 39

St.D. F.D. F.D. 856 4161 4173 0 12
Anal. 404 2297 2299 0 2

Anal. F.D. 649 4090 4100 0 10
Anal. 297 2297 2299 0 2

DSL48S Aug. density St.C. Anal. F.D. 911 3242 126 0 21
Anal. 283 3139 122 0 22

287UPGRADING COMBUSTION CHEMISTRY CODES



ical Jacobians. For the very large mechanisms,
the benefit is quite impressive, especially for
small numbers of parameters. For a small num-
ber of parameters, there is no benefit to using
analytical 	F/	p calculations; however, for me-
dium to large numbers of parameters, analytical
	F/	p can help the sensitivity calculations sub-
stantially. For very large numbers of parame-

ters, the benefit of analytical Jacobians and
	F/	p often gets washed out by the sheer num-
ber of back-substitutions required for the com-
putation. In these cases, the St.D. method is the
best method, because it typically requires fewer
time steps than the other methods. Otherwise,
the other methods typically perform as well or
better than the St.D. method, and for one

TABLE 12

Acetylene-Soot Mechanism. Four Hundred Ninety Eight Parameters

Solver Formulation Method Jac. 	F/	p CPU Time Steps
Jac.

Eval.
Conv.
Fail.

Error
Fail.

DASPK Density Si.C. F.D. F.D. 2552 3326 121 0 20
St.C. 2940 4034 176 0 78
St.D. 2941 4150 4160 0 10

Aug. density DASPK-Si.C. F.D. F.D. 2406 3241 129 0 21
Anal. 1237 3462 191 23 27

Anal. F.D. 2507 3407 124 0 26
Anal. 1301 3643 113 0 18

St.C. F.D. F.D. 2580 3757 149 0 45
Anal. 1018 3136 137 0 25

Anal. F.D. 2700 3882 135 0 50
Anal. 1036 3194 132 0 32

St.D. F.D. F.D. 2882 4161 4173 0 12
Anal. 898 2297 2299 0 2

Anal. F.D. 2629 4090 4100 0 10
Anal. 787 2297 2299 0 2

DSL48S Aug. density St.C. Anal. F.D. 4903 3434 117 0 10
Anal. 881 2967 122 0 20

TABLE 13

n-heptane Mechanism. One Parameter

Solver Formulation Method Jac. 	F/	p CPU Time Steps
Jac.

Eval.
Conv.
Fail.

Error
Fail.

DASPK Density Si.C. F.D. F.D. 667 2288 97 0 23
St.C. 1591 2735 259 10 109
St.D. 6007 1024 1027 0 3

Aug. density Si.C. F.D. F.D. 691 2155 98 0 23
Anal. 1824 2182 108 0 26

Anal. F.D. 328 2216 95 0 27
Anal. 1429 2154 96 0 20

St.C. F.D. F.D. 1031 2267 149 0 65
Anal. 1643 2063 114 0 31

Anal. F.D. 413 2076 129 0 46
Anal. 1448 2196 155 0 59

St.D. F.D. F.D. 6026 1024 1027 0 3
Anal. 6667 1024 1027 0 3

Anal. F.D. 2512 1024 1027 0 3
Anal. 2877 1024 1027 0 3

DSL48S Aug. density St.C. Anal. F.D. 108 2052 89 0 14
Anal. 793 1984 101 0 24

288 D. A. SCHWER ET AL.



parameter, the other methods are substantially
better. These observations motivate an imple-
mentation of the staggered direct method that is
able to exploit sparsity in the linear algebra.

CONCLUSIONS

This paper has discussed the application of
DAEPACK to two simple codes included with
CHEMKIN-II that calculate homogeneous
batch reactor simulations with and without sen-

sitivities. Using DAEPACK, we generated
FORTRAN code to compute analytical Jacobi-
ans for these calculations, and also compute the
sparsity pattern to use with sparse linear solvers
such as the Harwell MA48 libraries. Using these
codes, several different solvers and solution
procedures were used with the older codes to
evaluate the benefit of using these newer solu-
tion techniques.

To evaluate these new techniques and dem-
onstrate the utility of DAEPACK, three differ-

TABLE 14

n-heptane Mechanism. One Hundred Parameters

Solver Formulation Method Jac. 	F/	p CPU Time Steps
Jac.

Eval.
Conv.
Fail.

Error
Fail.

DASPK Density Si.C. F.D. F.D. 6391 2288 97 0 23
St.C. 9580 2980 291 20 116
St.D. 8886 1024 1027 0 3

Aug. density Si.C. F.D. F.D. 5767 2155 98 0 23
Anal. 4834 2182 108 0 26

Anal. F.D. 5481 2216 95 0 27
Anal. 4437 2154 96 0 20

St.C. F.D. F.D. 7507 2736 216 8 90
Anal. 4440 2108 139 0 61

Anal. F.D. 5025 2176 113 0 34
Anal. 4099 2210 145 0 52

St.D. F.D. F.D. 8357 1024 1027 0 3
Anal. 7446 1024 1027 0 3

Anal. F.D. 4200 1024 1027 0 3
Anal. 3905 1024 1027 0 3

DSL48S Aug. density St.C. Anal. F.D. 4859 2141 105 0 22
Anal. 1749 2062 94 0 14

TABLE 15

n-heptane Mechanism. Two Thousand Four Hundred Forty Six Parameters

Solver Formulation Method Jac. 	F/	p CPU Time Steps
Jac.

Eval.
Conv.
Fail.

Error
Fail.

DASPK Density Si.C. F.D. F.D. 132,880 2288 97 0 23
St.C. 120,765 2310 159 3 64
St.D. 47,389 1024 1027 0 3

Aug. density Si.C. F.D. F.D. 130,411 2155 98 0 23
Anal. 91,097 2182 108 0 26

Anal. F.D. 130,102 2278 105 0 32
Anal. 86,789 2154 96 0 20

St.C. F.D. Anal. 72,852 2053 166 0 68
Anal. Anal. 75,523 2105 146 0 59

St.D. F.D. F.D. 47,810 1024 1027 0 3
Anal. F.D. 43,714 1024 1027 0 3

Anal. 32,248 1024 1027 0 3
DSL48S Aug. density St.C. Anal. F.D. 117,344 2029 90 0 19

Anal. 23,123 1966 89 0 17

289UPGRADING COMBUSTION CHEMISTRY CODES



ent kinetic mechanisms were examined, all of
which are fairly large and complex. The sparsity
for each of these mechanisms was examined
along with the efficiency of using the analyti-
cal Jacobians and 	F/	p generated using
DAEPACK, and then actual simulations were
performed with and without sensitivity calcu-
lations.

Results from these simulations show that no
one solution procedure is most efficient for all
kinetic mechanisms. Careful consideration of
the sparsity and number of parameters (for
sensitivity calculations) must be taken into ac-
count before determining the appropriate solu-
tion strategy. Both for simulations with and
without sensitivities, we found sparsity has a
very large impact for large kinetic systems, and
anyone working with these types of systems
could substantially reduce the amount of CPU
time used by exploiting both sparsity and ana-
lytical derivatives. For smaller systems, how-
ever, the advantage is either small or non-
existent. For the constant pressure simulations
conducted for this paper, we found it was also
essential to do a simple reformulation of the set
of dependent variables before taking advantage
of sparsity.

The largest benefit of using DAEPACK gen-
erated code is it gives the modeler a great
amount of flexibility in designing a solution
strategy without the high cost of writing and
debugging code. In particular, none of the code
in the CHEMKIN-II library subroutines was
altered at any time throughout this study. Using
DAEPACK generated code, the analysis of
sparsity for different chemical kinetic systems is
very easy, and can give insight into the kinetic
mechanism and help to determine the appropri-
ate solution technique. Based on that analysis,
and on the guidelines given above, a solution
strategy can be found tailored to the kinetic
system of interest to give the most efficient
results. The interested reader may find more
information on DAEPACK at the Web site
http://yoric.mit.edu/daepack/daepack.html or
reference [6].

This research was supported by the EPA Center
on Airborne Organics at MIT and Alstom Power.

REFERENCES

1. Susnow, R. G., Dean, A. M., Green, W. H., Peczak, P.,
and Broadbelt, L. J. J. Phys. Chem. 101:3731–3740
(1997).

2. Petzold, L. R., and Zhu, W. AIChE Journal, 45(4):869–
886 (1999).

3. Lam, S. H., and Goussis, P. A. Int J. Chem. Kin,
26(4):461–486 (1994).

4. Maas, U. and Pope, S. B. 24th Symposium (Intl) on
Combustion, The Combustion Institute. Pittsburgh,
1992, p. 103.

5. Peters, N. Lecture Notes in Physics, 241:90–109 (1985).
6. Tolsma, J. E., and Barton, P. I. Ind. Eng. Chem. Res.,

39(6):1826–1839 (2000).
7. Griewank, A. Evaluating Derivatives, Principles and

Techniques of Algorithmic Differentiation. Number 19
in Frontiers in Applied Mathematics. SIAM, Philadel-
phia, PA, 2000.

8. Duff, I. S., and Reid, J. K. MA48, a Fortran code for
direct solution of sparse unsymmetric linear systems of
equations. Technical Report RAL-930-072, Ruther-
ford Appleton Laboratory, October 1993.

9. Griewank, A., Juedes, D., and Utke, J. ACM Transac-
tions on Mathematical Software, 22(2):131–167 (1996).

10. Shiriaev, D., Griewank, A., and Utke, J. A user guide
to ADOL-F: Automatic differentiation of Fortran
codes. Technical report, Institute of Scientific Com-
puting, TU Dresden, 1995.

11. Christianson, D. Bruce. IMA Journal of Numerical
Analysis, 12:135–150 (1992).

12. Corliss, George F. Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application. (An-
dreas Griewank and George F. Corliss, Eds.) SIAM,
Philadelphia, PA, 1991, pp. 139–146.

13. Hillstrom, Kenneth E. JAKEF - A portable symbolic
differentiator of functions given by algorithms. Tech-
nical Report ANL-82-48, Mathematics and Computer
Science Division, Argonne National Laboratory, Ar-
gonne, ILL, 1982.

14. Horwedel, Jim E., Worley, Brian A., Oblow, E. M.,
and Pin, F. G. GRESS version 1.0 users manual.
Technical Memorandum ORNL/TM 10835, Martin
Marietta Energy Systems, Inc., Oak Ridge National
Laboratory, Oak Ridge, Tenn., 1988.

15. Kubota, K. In Automatic Differentiation of Algorithms:
Theory, Implementation, and Application, (Andreas
Griewank and George F. Corliss, ed.), SIAM, Phila-
delphia, Penn., 1991. pp. 251–262.

16. Bischof, C., Carle, A., Corliss, G., Griewank, A., and
Hovland, P. Scientific Programming, 1(1):11–29 (1992).

17. Rostaing, N., Dalmas, S., and Galligo, A. Tellus,
45A:558–568 (1993).

18. Giering, R., and Kaminski, T. ACM Transactions on
Mathematical Software, 24:437–474 (1998).

19. Moore, R. E. Methods and Applications of Interval
Analysis. SIAM, Philadelphia, 1979.

20. Gatzke, Edward P., Tolsma, John E., and Barton, Paul
I. Optimization and Engineering, 2001.

21. Park, Taeshin, and Barton, Paul I. ACM Transactions

290 D. A. SCHWER ET AL.



on Modelling and Computer Simulation, 6(2):137–165
(1996).

22. Galán, Santos, Feehery, Willian F., and Barton, Paul I.
Applied Numerical Mathematics, 31:17–47 (1999).

23. Tolsma, John E., and Barton, Paul I. SIAM Journal on
Scientific Computing, 2001 (in press).

24. Kee, R. J., Miller, J. A., and Jefferson, T. H.
CHEMKIN: A general-purpose, problem-indepen-
dent, transportable, FORTRAN chemical kinetics
code package. Technical Report SAND80–8003, San-
dia National Laboratories, 1980.

25. Kee, R. J., Rupley, F. M., and Miller, J. A.
CHEMKIN-II: A FORTRAN chemical kinetics pack-
age for the analysis of gas-phas chemical kinetics.
Technical Report SAND89–8009, Sandia National
Laboratories, 1990.

26. Lutz, A. E., Kee, R. J., and Miller, J. A. SENKIN: A
FORTRAN program for predicting homogeneous gas
phase chemical kinetics with sensitivity analysis. Tech-
nical Report SAND87–8248 Revised, Sandia National
Laboratories, 1988.

27. Smith, G. P., Golden, D. M., Frenklach, M., Moriarty,
N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T.,
Hanson, R. K., Song, S., Gardiner, Jr., W. C., Lissian-
ski, V.V., and Qin, Z. http://www.me.berkeley.edu/
gri_mech/.

28. Jessee, J.P., Gansman, R.F., and Fiveland, W.A. Com-
bust. Sci. Technol. 129:113–140 (1997).

29. Bennett, B.A.V., McEnally, C.S., Pfefferle, L.D., and
Smooke, M.D. Combust. Flame, 123:522–546 (2000).

30. Wang, H., and Frenklach, M. Combust. Flame, 110:
173–221 (1997).

31. Curran, H. J., Gaffuri, P., Pitz, W. J., and Westbrook,
C. K. Combust. Flame, 114:149–177 (1998).

32. Gear, C. W. Numerical initial value problems in ordi-
nary differential equations. Prentice-Hall series in auto-
matic computation. Prentice Hall, Englewood Cliffs,
NJ, 1971.

33. Brenan, K. E., Campbell, S. L., and Petzold, L. R.
Numerical Solution of Initial-Value Problems in Differ-
ential-Algebraic Equations. SIAM, Philadelphia, PA,
2nd edition, 1995.

34. Brown, P. N., Byrne, G. D., and Hindmarsh, A. C.
SIAM J. Sci. Stat. Comput., 10:1038–1051 (1989).

35. Feehery, W. F., Tolsma, J. E., and Barton, P. I. Appl.
Numer. Math., 25:41–54 (1997).

36. Rabitz, H., Kramer, M., and Dacol, D. Ann. Rev. Phys.
Chem., 34:419–461 (1983).

37. Caracotsios, M., and Stewart, W. E. Comput. Chem.
Engng., 9(4):359–365 (1985).

38. Maly, T., and Petzold, L. R. Appl. Numer. Math.,
20:57–79 (1997).

39. Li, S., Petzold, L., and Zhu, W. Appl. Numer. Math.,
32:161–174 (2000).

Received 11 June 2001; revised 23 October 2001; accepted 8
November 2001

291UPGRADING COMBUSTION CHEMISTRY CODES


